home / fivethirtyeight

Menu
  • GraphQL API

Most Common Name: new-top-firstNames.csv

Table actions
  • GraphQL API for most-common-name/new-top-firstNames

This directory contains the code and data behind the story Dear Mona, What’s The Most Common Name In America?

The main script file is most-common-name.R

There are four input files:

  • state-pop.csv - Total population and Hispanic population by state.
  • surnames.csv - Data on surnames from the U.S. Census Bureau, including a breakdown by race/ethnicity.
  • aging-curve.csv - Data from the Social Security Administration on the chances that someone born in the decade shown was still alive in 2013: http://www.ssa.gov/oact/NOTES/as120/LifeTables_Tbl_7.html
  • adjustments.csv - Taken directly from Lee Hartman's article: http://mypage.siu.edu/lhartman/johnsmith.html.

And five output files:

  • adjusted-name-combinations-list.csv - Adjusted estimates for the most common full names.
  • adjusted-name-combinations-matrix.csv - The same data from the file adjusted-name-combinations-list.csv but in matrix form. These are the estimates presented in the second (and final) table of the article.
  • independent-name-combinations-by-pop.csv - Matrix of estimates for the top 100 most common first names by top 100 most common surnames. These were calculated using independent odds, and displayed in the first table presented in the article.
  • new-top-firstNames.csv - Final estimated ranking of top first names.
  • new-top-surnames.csv - Final estimated ranking of top surnames.

Data license: CC Attribution 4.0 License · Data source: fivethirtyeight/data on GitHub · About: simonw/fivethirtyeight-datasette

100 rows

✎ View and edit SQL

This data as json, copyable, CSV (advanced)

Link rowid ▼ Unnamed: 0 name newPerct2013
1 1 1 Michael 0.0115773775805504
2 2 2 James 0.0102178024415186
3 3 3 John 0.0096746253047379
4 4 4 Robert 0.0094930412297644
5 5 5 David 0.0089427847423005
6 6 6 William 0.0074842232785032
7 7 7 Mary 0.0068386945818094
8 8 8 Christopher 0.0059006184684939
9 9 9 Joseph 0.0054104428312078
10 10 10 Richard 0.0053460679176983
11 11 11 Daniel 0.0051379341207295
12 12 12 Thomas 0.0049219730475922
13 13 13 Matthew 0.0044967499170826
14 14 14 Jennifer 0.004333023933275
15 15 15 Charles 0.0042796657100127
16 16 16 Anthony 0.003839542974835
17 17 17 Patricia 0.0037841929592687
18 18 18 Linda 0.0037506074308516
19 19 19 Mark 0.0035590056504845
20 20 20 Elizabeth 0.0035296110402352
21 21 21 Joshua 0.0035100546456675
22 22 22 Steven 0.0034518266990093
23 23 23 Andrew 0.0033890270832642
24 24 24 Kevin 0.0032944041275432
25 25 25 Brian 0.0032437751603121
26 26 26 Barbara 0.0032069573880856
27 27 27 Jessica 0.0031782970948791
28 28 28 Jason 0.0029687524345155
29 29 29 Susan 0.0029413350165129
30 30 30 Timothy 0.0028796033151035
31 31 31 Paul 0.0028718820100696
32 32 32 Kenneth 0.0027658643726932
33 33 33 Lisa 0.0027488220561175
34 34 34 Ryan 0.0027436239667384
35 35 35 Sarah 0.0026855805308966
36 36 36 Karen 0.0026596911634413
37 37 37 Jeffrey 0.0026436179487909
38 38 38 Donald 0.0026171846900572
39 39 39 Ashley 0.002572427577429
40 40 40 Eric 0.0025318034376457
41 41 41 Jacob 0.0025096612389954
42 42 42 Nicholas 0.0025043229765372
43 43 43 Jonathan 0.0024974802399506
44 44 44 Ronald 0.0024433640650705
45 45 45 Michelle 0.0024121339235852
46 46 46 Kimberly 0.0023921787332589
47 47 47 Nancy 0.0023507899583398
48 48 48 Justin 0.0022879719994175
49 49 49 Sandra 0.002272959446503
50 50 50 Amanda 0.0022533963698394
51 51 51 Brandon 0.002248511922654
52 52 52 Stephanie 0.0022300394349136
53 53 53 Emily 0.0022231427985219
54 54 54 Melissa 0.0022117913607847
55 55 55 Gary 0.0021777961601186
56 56 56 Edward 0.002171435130366
57 57 57 Stephen 0.0021462504814853
58 58 58 Scott 0.0021016777733248
59 59 59 George 0.0020921085939694
60 60 60 Donna 0.0020891519915374
61 61 61 Jose 0.0020882444634639
62 62 62 Rebecca 0.0020161572945225
63 63 63 Deborah 0.0020081399390235
64 64 64 Laura 0.0019640736973327
65 65 65 Cynthia 0.0019624081416459
66 66 66 Carol 0.0019620628998264
67 67 67 Amy 0.0019288900901551
68 68 68 Margaret 0.0018931018828897
69 69 69 Gregory 0.0018809363559476
70 70 70 Sharon 0.0018799777047211
71 71 71 Larry 0.00186553916994
72 72 72 Angela 0.0018545158446485
73 73 73 Maria 0.0018281447662451
74 74 74 Alexander 0.0018027326081602
75 75 75 Benjamin 0.0017981159341741
76 76 76 Nicole 0.001768699487455
77 77 77 Kathleen 0.0017539950012377
78 78 78 Patrick 0.0017385164165476
79 79 79 Samantha 0.0017203135616051
80 80 80 Tyler 0.0017115892984241
81 81 81 Samuel 0.0016856375344525
82 82 82 Betty 0.0016551369932907
83 83 83 Brenda 0.0016417178522197
84 84 84 Pamela 0.0016211386397259
85 85 85 Aaron 0.0016148578575288
86 86 86 Kelly 0.0015682456808089
87 87 87 Heather 0.0015323391575959
88 88 88 Rachel 0.0015314418810957
89 89 89 Adam 0.0015216776825367
90 90 90 Christine 0.0015186055739915
91 91 91 Zachary 0.0015148923946246
92 92 92 Debra 0.0015100440553219
93 93 93 Katherine 0.0014811578770464
94 94 94 Dennis 0.0014647067192081
95 95 95 Nathan 0.0014556087512521
96 96 96 Christina 0.0014349376044808
97 97 97 Julie 0.001418156804872
98 98 98 Jordan 0.0014159652809501
99 99 99 Kyle 0.0014134690556575
100 100 100 Anna 0.001400270519728

Advanced export

JSON shape: default, array, newline-delimited

CSV options:

CREATE TABLE "most-common-name/new-top-firstNames" (
"Unnamed: 0" INTEGER,
  "name" TEXT,
  "newPerct2013" REAL
);
Powered by Datasette · Queries took 5.389ms · Data license: CC Attribution 4.0 License · Data source: fivethirtyeight/data on GitHub · About: simonw/fivethirtyeight-datasette