home / fivethirtyeight

Menu
  • GraphQL API

The Lasting Legacy Of Redlining: metro-grades.csv

Table actions
  • GraphQL API for redlining/metro-grades

This repo contains the data behind the story The Lasting Legacy Of Redlining. There are two csv files in this repo: metro-grades.csv and zone-block-matches.csv.


metro-grades.csv contains 2020 population total estimates by race/ethnicity for combined zones of each redlining grade (from Home Owners' Loan Corporation [HOLC] maps originally drawn in 1935-40, downloaded from the Mapping Inequality project) within micro- and metropolitan areas. Also included are population estimates in the surrounding area of each metropolitan area's HOLC map (computed by adding a 10 percent buffer radius to the minimum bounding circle of all zones in that metro area) and location quotients (LQs) for each racial/ethnic group and HOLC grade. LQs are small-area measures of segregation that specifically compare one racial/ethnic group’s proportion in a granular geography to their proportion in a larger surrounding geography. An LQ above 1 for a given racial group indicates overrepresentation in that HOLC zone relative to the broader surrounding area, and values below 1 indicate underrepresentation.

Population and race/ethnicity data comes from the 2020 U.S. decennial census. White, Black and Asian data excludes those who indicated Hispanic or Latino ethnicity. Hispanic/Latino data includes all who indicated Hispanic or Latino ethnicity, regardless of race. Other race data includes all population counts that did not fall under white, Black, Asian or Latino groups.

Only micro- and metropolitan areas with both A- (“best”) and D-rated (“hazardous”) zones in their redlining map are included — 138 of a total 143 metropolitan areas in the data from Mapping Inequality.

Header Definition
metro_area Official U.S. Census name of micro- or metropolitan area — defined as "Core-Based Statistical Areas". The first city and state listed are used as the display name for each micro/metropolitan area in the story (for example, "Chicago-Naperville-Elgin, IL-IN-WI" is referred to as "Chicago, IL").
holc_grade Grade assigned by the Home Owners' Loan Corporation (HOLC). A: "best" (green). B: "Still Desirable" (blue). C: "Definitely Declining" (yellow). D: "Hazardous" (red).
white_pop Estimate of non-Hispanic white population within HOLC zones with a given holc_grade in a given metro_area. Rounded to the nearest integer.
black_pop Estimate of non-Hispanic Black population within HOLC zones with a given holc_grade in a given metro_area. Rounded to the nearest integer.
hisp_pop Estimate of Hispanic/Latino population within HOLC zones with a given holc_grade in a given metro_area. Rounded to the nearest integer.
asian_pop Estimate of non-Hispanic Asian population within HOLC zones with a given holc_grade in a given metro_area. Rounded to the nearest integer.
other_pop Estimate of population in any other racial/ethnic groups within HOLC zones with a given holc_grade in a given metro_area. Rounded to the nearest integer.
total_pop Estimate of total population (across all racial/ethnic groups) within HOLC zones with a given holc_grade in a given metro_area. Rounded to the nearest integer.
pct_white Estimate of the percentage of total population within HOLC zones with a given holc_grade in a given metro_area that are non-Hispanic white. Represented between 0-100. Rounded to the nearest two decimal places.
pct_black Estimate of the percentage of total population within HOLC zones with a given holc_grade in a given metro_area that are non-Hispanic Black. Represented between 0-100. Rounded to the nearest two decimal places.
pct_hisp Estimate of the percentage of total population within HOLC zones with a given holc_grade in a given metro_area that are Hispanic/Latino. Represented between 0-100. Rounded to the nearest two decimal places.
pct_asian Estimate of the percentage of total population within HOLC zones with a given holc_grade in a given metro_area that are non-Hispanic Asian. Represented between 0-100. Rounded to the nearest two decimal places.
pct_other Estimate of the percentage of total population within HOLC zones with a given holc_grade in a given metro_area in any other racial/ethnic group. Represented between 0-100. Rounded to the nearest two decimal places.
lq_white Non-Hispanic white location quotient for a given holc_grade and metro_area.
lq_black Non-Hispanic Black location quotient for a given holc_grade and metro_area.
lq_hisp Hispanic/Latino location quotient for a given holc_grade and metro_area.
lq_asian Non-Hispanic Asian location quotient for a given holc_grade and metro_area.
lq_other All other racial/ethnic groups' location quotient for a given holc_grade and metro_area.
surr_area_white_pop Estimate of non-Hispanic white population within surrounding area of a given metro_area's HOLC zones. Rounded to nearest integer. Repeated for each holc_grade for a given metro_area.
surr_area_black_pop Estimate of non-Hispanic Black population within surrounding area of a given metro_area's HOLC zones. Rounded to nearest integer. Repeated for each holc_grade for a given metro_area.
surr_area_hisp_pop Estimate of Hispanic/Latino population within surrounding area of a given metro_area's HOLC zones. Rounded to nearest integer. Repeated for each holc_grade for a given metro_area.
surr_area_asian_pop Estimate of non-Hispanic Asian population within surrounding area of a given metro_area's HOLC zones. Rounded to nearest integer. Repeated for each holc_grade for a given metro_area.
surr_area_other_pop Estimate of population in any other racial/ethnic groups within surrounding area of a given metro_area's HOLC zones. Rounded to nearest integer. Repeated for each holc_grade for a given metro_area.
surr_area_total_pop Estimate of total population (across all racial/ethnic groups) within surrounding area of a given metro_area's HOLC zones. Rounded to nearest integer. Repeated for each holc_grade for a given metro_area.
surr_area_pct_white Estimate of the percentage of total population within surrounding area of a given metro_area's HOLC zones that are non-Hispanic white. Represented between 0-100. Rounded to the nearest two decimal places. Repeated for each holc_grade for a given metro_area.
surr_area_pct_black Estimate of the percentage of total population within surrounding area of a given metro_area's HOLC zones that are non-Hispanic Black. Represented between 0-100. Rounded to the nearest two decimal places. Repeated for each holc_grade for a given metro_area.
surr_area_pct_hisp Estimate of the percentage of total population within surrounding area of a given metro_area's HOLC zones that are Hispanic/Latino. Represented between 0-100. Rounded to the nearest two decimal places. Repeated for each holc_grade for a given metro_area.
surr_area_pct_asian Estimate of the percentage of total population within surrounding area of a given metro_area's HOLC zones that are non-Hispanic Asian. Represented between 0-100. Rounded to the nearest two decimal places. Repeated for each holc_grade for a given metro_area.
surr_area_pct_other Estimate of the percentage of total population within surrounding area of a given metro_area's HOLC zones in any other racial/ethnic group. Represented between 0-100. Rounded to the nearest two decimal places. Repeated for each holc_grade for a given metro_area.

zone-block-matches.csv is a crosswalk between 2020 U.S. decennial census blocks and Home Owners' Loan Corporation (HOLC) zones (from the collective spatial data shapefile, made available for download by the Mapping Inequality project). HOLC zones were matched to census blocks by first determining census blocks geographically intersected with each zone, then calculating the proportion of the block’s total area that intersects with that HOLC zone. This intersecting area was used to weight each block's census data, which was then summed to estimate 2020 census totals in each HOLC zone.

HOLC zones do not have a unique ID column in the Mapping Inequality shapefile (across all cities and states), but each HOLC zone should have a unique combination of the five columns that begin with holc_ below.

The spatial calculations that generated this data were conducted using the Albers Equal-Area Conic projection.

Header Definition
holc_city City name from this zone's HOLC map. Matches to city column in the Mapping Inequality shapefile.
holc_state State abbreviation from this zone's HOLC map. Matches to state column in the Mapping Inequality shapefile.
holc_grade HOLC grade assigned to this zone (A, B, C or D). Matches to holc_grade column in the Mapping Inequality shapefile.
holc_id HOLC ID assigned to this zone (may be empty). Matches to holc_id column in the Mapping Inequality shapefile.
holc_neighborhood_id Neighborhood ID. Unique for all HOLC zones except holc_ids B6 and B7 in Savannah, GA, which share a holc_neighborhood_id of 8678. Matches to neighborho column in the Mapping Inequality shapefile.
block_geoid20 GEOID20 of 2020 U.S. census block that intersects with a given HOLC zone.
pct_match Estimated percent of the 2020 U.S. census block's total area that intersects with a given HOLC zone. Use this column to weight census data to compute aggregate 2020 U.S. census estimates within an HOLC zone.

Data license: CC Attribution 4.0 License · Data source: fivethirtyeight/data on GitHub · About: simonw/fivethirtyeight-datasette

551 rows

✎ View and edit SQL

This data as json, copyable, CSV (advanced)

Suggested facets: holc_grade

Link rowid ▼ metro_area holc_grade white_pop black_pop hisp_pop asian_pop other_pop total_pop pct_white pct_black pct_hisp pct_asian pct_other lq_white lq_black lq_hisp lq_asian lq_other surr_area_white_pop surr_area_black_pop surr_area_hisp_pop surr_area_asian_pop surr_area_other_pop surr_area_pct_white surr_area_pct_black surr_area_pct_hisp surr_area_pct_asian surr_area_pct_other
1 1 Akron, OH A 24702 8624 956 688 1993 36963 66.83 23.33 2.59 1.86 5.39 0.94 1.41 1.0 0.46 0.97 304399 70692 11037 17295 23839 71.24 16.55 2.58 4.05 5.58
2 2 Akron, OH B 41531 16499 2208 3367 4211 67816 61.24 24.33 3.26 4.96 6.21 0.86 1.47 1.26 1.23 1.11 304399 70692 11037 17295 23839 71.24 16.55 2.58 4.05 5.58
3 3 Akron, OH C 73105 22847 3149 6291 7302 112694 64.87 20.27 2.79 5.58 6.48 0.91 1.23 1.08 1.38 1.16 304399 70692 11037 17295 23839 71.24 16.55 2.58 4.05 5.58
4 4 Akron, OH D 6179 6921 567 455 1022 15144 40.8 45.7 3.75 3.0 6.75 0.57 2.76 1.45 0.74 1.21 304399 70692 11037 17295 23839 71.24 16.55 2.58 4.05 5.58
5 5 Albany-Schenectady-Troy, NY A 16989 1818 1317 1998 1182 23303 72.91 7.8 5.65 8.57 5.07 1.09 0.66 0.77 1.21 0.72 387016 68371 42699 41112 40596 66.75 11.79 7.36 7.09 7.0
6 6 Albany-Schenectady-Troy, NY B 26644 7094 4334 2509 4650 45230 58.91 15.68 9.58 5.55 10.28 0.88 1.33 1.3 0.78 1.47 387016 68371 42699 41112 40596 66.75 11.79 7.36 7.09 7.0
7 7 Albany-Schenectady-Troy, NY C 56878 16795 10357 6355 11153 101538 56.02 16.54 10.2 6.26 10.98 0.84 1.4 1.39 0.88 1.57 387016 68371 42699 41112 40596 66.75 11.79 7.36 7.09 7.0
8 8 Albany-Schenectady-Troy, NY D 16806 19581 6688 2191 4364 49630 33.86 39.45 13.48 4.42 8.79 0.51 3.35 1.83 0.62 1.26 387016 68371 42699 41112 40596 66.75 11.79 7.36 7.09 7.0
9 9 Allentown-Bethlehem-Easton, PA-NJ A 1076 71 367 21 82 1616 66.56 4.38 22.7 1.3 5.05 1.1 0.69 0.87 0.43 1.22 69477 7364 30164 3524 4753 60.27 6.39 26.17 3.06 4.12
10 10 Allentown-Bethlehem-Easton, PA-NJ B 16774 1962 7935 731 1396 28798 58.25 6.81 27.55 2.54 4.85 0.97 1.07 1.05 0.83 1.18 69477 7364 30164 3524 4753 60.27 6.39 26.17 3.06 4.12
11 11 Allentown-Bethlehem-Easton, PA-NJ C 4347 718 2967 184 346 8561 50.78 8.38 34.66 2.14 4.04 0.84 1.31 1.32 0.7 0.98 69477 7364 30164 3524 4753 60.27 6.39 26.17 3.06 4.12
12 12 Allentown-Bethlehem-Easton, PA-NJ D 2864 301 1625 85 252 5127 55.87 5.87 31.7 1.65 4.92 0.93 0.92 1.21 0.54 1.19 69477 7364 30164 3524 4753 60.27 6.39 26.17 3.06 4.12
13 13 Altoona, PA A 421 1 17 4 18 460 91.38 0.31 3.59 0.86 3.86 1.03 0.08 2.09 1.18 0.78 50121 2059 970 412 2804 88.92 3.65 1.72 0.73 4.97
14 14 Altoona, PA B 6612 166 117 55 318 7268 90.97 2.28 1.61 0.76 4.37 1.02 0.63 0.94 1.04 0.88 50121 2059 970 412 2804 88.92 3.65 1.72 0.73 4.97
15 15 Altoona, PA C 23472 1174 490 118 1554 26808 87.56 4.38 1.83 0.44 5.8 0.98 1.2 1.06 0.6 1.17 50121 2059 970 412 2804 88.92 3.65 1.72 0.73 4.97
16 16 Altoona, PA D 3920 267 71 24 268 4551 86.14 5.88 1.55 0.53 5.89 0.97 1.61 0.9 0.73 1.18 50121 2059 970 412 2804 88.92 3.65 1.72 0.73 4.97
17 17 Amarillo, TX A 6107 297 1687 215 622 8927 68.41 3.32 18.89 2.4 6.97 1.62 0.38 0.46 0.62 1.57 52724 10972 50830 4816 5556 42.21 8.78 40.7 3.86 4.45
18 18 Amarillo, TX B 7139 868 4223 150 732 13113 54.45 6.62 32.2 1.15 5.58 1.29 0.75 0.79 0.3 1.26 52724 10972 50830 4816 5556 42.21 8.78 40.7 3.86 4.45
19 19 Amarillo, TX C 2140 775 5538 131 320 8904 24.03 8.7 62.2 1.48 3.59 0.57 0.99 1.53 0.38 0.81 52724 10972 50830 4816 5556 42.21 8.78 40.7 3.86 4.45
20 20 Amarillo, TX D 5865 2511 16643 764 909 26692 21.97 9.41 62.35 2.86 3.41 0.52 1.07 1.53 0.74 0.77 52724 10972 50830 4816 5556 42.21 8.78 40.7 3.86 4.45
21 21 Asheville, NC A 4557 86 163 46 204 5055 90.13 1.69 3.23 0.91 4.04 1.21 0.18 0.37 0.71 0.7 73949 9577 8774 1268 5723 74.48 9.65 8.84 1.28 5.76
22 22 Asheville, NC B 6359 533 358 84 431 7765 81.9 6.86 4.62 1.08 5.54 1.1 0.71 0.52 0.85 0.96 73949 9577 8774 1268 5723 74.48 9.65 8.84 1.28 5.76
23 23 Asheville, NC C 18708 2792 1780 251 1624 25156 74.37 11.1 7.07 1.0 6.46 1.0 1.15 0.8 0.78 1.12 73949 9577 8774 1268 5723 74.48 9.65 8.84 1.28 5.76
24 24 Asheville, NC D 3209 1527 267 55 350 5408 59.33 28.24 4.93 1.02 6.47 0.8 2.93 0.56 0.8 1.12 73949 9577 8774 1268 5723 74.48 9.65 8.84 1.28 5.76
25 25 Atlanta-Sandy Springs-Alpharetta, GA A 9903 729 602 497 623 12354 80.16 5.9 4.87 4.02 5.04 2.17 0.13 0.58 0.84 1.16 329328 408208 74469 42563 38774 36.86 45.69 8.34 4.76 4.34
26 26 Atlanta-Sandy Springs-Alpharetta, GA B 26370 5071 1959 1624 1772 36797 71.67 13.78 5.32 4.41 4.82 1.94 0.3 0.64 0.93 1.11 329328 408208 74469 42563 38774 36.86 45.69 8.34 4.76 4.34
27 27 Atlanta-Sandy Springs-Alpharetta, GA C 64172 31002 8144 6395 6149 115862 55.39 26.76 7.03 5.52 5.31 1.5 0.59 0.84 1.16 1.22 329328 408208 74469 42563 38774 36.86 45.69 8.34 4.76 4.34
28 28 Atlanta-Sandy Springs-Alpharetta, GA D 21317 39254 4386 2688 3345 70991 30.03 55.29 6.18 3.79 4.71 0.81 1.21 0.74 0.79 1.09 329328 408208 74469 42563 38774 36.86 45.69 8.34 4.76 4.34
29 29 Atlantic City-Hammonton, NJ A 631 6 55 20 49 761 82.91 0.82 7.25 2.58 6.45 1.69 0.05 0.33 0.29 1.67 77899 26269 34507 14179 6155 48.99 16.52 21.7 8.92 3.87
30 30 Atlantic City-Hammonton, NJ B 7354 520 2499 1791 494 12659 58.09 4.11 19.74 14.15 3.91 1.19 0.25 0.91 1.59 1.01 77899 26269 34507 14179 6155 48.99 16.52 21.7 8.92 3.87
31 31 Atlantic City-Hammonton, NJ C 14269 8980 12902 3555 1421 41128 34.69 21.83 31.37 8.64 3.46 0.71 1.32 1.45 0.97 0.89 77899 26269 34507 14179 6155 48.99 16.52 21.7 8.92 3.87
32 32 Atlantic City-Hammonton, NJ D 1730 7503 3766 324 610 13933 12.42 53.85 27.03 2.33 4.38 0.25 3.26 1.25 0.26 1.13 77899 26269 34507 14179 6155 48.99 16.52 21.7 8.92 3.87
33 33 Augusta-Richmond County, GA-SC A 758 27 21 7 35 847 89.54 3.16 2.43 0.8 4.08 1.98 0.07 0.52 0.43 0.93 30084 29103 3077 1237 2912 45.3 43.82 4.63 1.86 4.38
34 34 Augusta-Richmond County, GA-SC B 1775 242 101 30 96 2244 79.12 10.78 4.49 1.33 4.28 1.75 0.25 0.97 0.71 0.98 30084 29103 3077 1237 2912 45.3 43.82 4.63 1.86 4.38
35 35 Augusta-Richmond County, GA-SC C 4011 1470 318 111 316 6227 64.41 23.61 5.11 1.79 5.08 1.42 0.54 1.1 0.96 1.16 30084 29103 3077 1237 2912 45.3 43.82 4.63 1.86 4.38
36 36 Augusta-Richmond County, GA-SC D 2885 8086 365 240 556 12131 23.78 66.66 3.01 1.98 4.58 0.52 1.52 0.65 1.06 1.04 30084 29103 3077 1237 2912 45.3 43.82 4.63 1.86 4.38
37 37 Austin-Round Rock-Georgetown, TX A 21180 591 3840 3073 1457 30142 70.27 1.96 12.74 10.19 4.83 1.12 0.44 0.65 1.25 0.97 153605 10841 48069 20005 12193 62.77 4.43 19.64 8.17 4.98
38 38 Austin-Round Rock-Georgetown, TX B 27936 1137 7228 5054 2145 43501 64.22 2.61 16.62 11.62 4.93 1.02 0.59 0.85 1.42 0.99 153605 10841 48069 20005 12193 62.77 4.43 19.64 8.17 4.98
39 39 Austin-Round Rock-Georgetown, TX C 7685 594 2028 807 534 11648 65.98 5.1 17.41 6.93 4.58 1.05 1.15 0.89 0.85 0.92 153605 10841 48069 20005 12193 62.77 4.43 19.64 8.17 4.98
40 40 Austin-Round Rock-Georgetown, TX D 16726 2732 7514 1422 1596 29990 55.77 9.11 25.05 4.74 5.32 0.89 2.06 1.28 0.58 1.07 153605 10841 48069 20005 12193 62.77 4.43 19.64 8.17 4.98
41 41 Baltimore-Columbia-Towson, MD A 14716 16262 1303 2259 1855 36397 40.43 44.68 3.58 6.21 5.1 1.08 1.0 0.44 1.26 1.05 403254 478015 87364 52705 52017 37.57 44.53 8.14 4.91 4.85
42 42 Baltimore-Columbia-Towson, MD B 61893 109091 8536 5565 9215 194300 31.85 56.15 4.39 2.86 4.74 0.85 1.26 0.54 0.58 0.98 403254 478015 87364 52705 52017 37.57 44.53 8.14 4.91 4.85
43 43 Baltimore-Columbia-Towson, MD C 49480 90595 17851 5909 8271 172105 28.75 52.64 10.37 3.43 4.81 0.77 1.18 1.27 0.7 0.99 403254 478015 87364 52705 52017 37.57 44.53 8.14 4.91 4.85
44 44 Baltimore-Columbia-Towson, MD D 45701 56107 11845 6455 5786 125894 36.3 44.57 9.41 5.13 4.6 0.97 1.0 1.16 1.04 0.95 403254 478015 87364 52705 52017 37.57 44.53 8.14 4.91 4.85
45 45 Battle Creek, MI A 810 86 39 47 54 1036 78.19 8.3 3.8 4.53 5.17 1.18 0.55 0.55 1.05 0.7 47157 10632 4890 3055 5241 66.44 14.98 6.89 4.3 7.38
46 46 Battle Creek, MI B 1160 349 99 103 137 1848 62.79 18.89 5.35 5.57 7.4 0.94 1.26 0.78 1.29 1.0 47157 10632 4890 3055 5241 66.44 14.98 6.89 4.3 7.38
47 47 Battle Creek, MI C 15314 4293 2326 615 2154 24702 62.0 17.38 9.42 2.49 8.72 0.93 1.16 1.37 0.58 1.18 47157 10632 4890 3055 5241 66.44 14.98 6.89 4.3 7.38
48 48 Battle Creek, MI D 3240 1141 580 41 504 5505 58.85 20.73 10.53 0.74 9.15 0.89 1.38 1.53 0.17 1.24 47157 10632 4890 3055 5241 66.44 14.98 6.89 4.3 7.38
49 49 Bay City, MI A 621 5 36 3 21 686 90.51 0.69 5.26 0.47 3.06 1.09 0.28 0.63 0.85 0.54 39060 1159 3933 264 2643 83.0 2.46 8.36 0.56 5.62
50 50 Bay City, MI B 1694 46 181 15 95 2030 83.43 2.26 8.92 0.73 4.67 1.01 0.92 1.07 1.3 0.83 39060 1159 3933 264 2643 83.0 2.46 8.36 0.56 5.62
51 51 Bay City, MI C 9841 306 1160 60 759 12126 81.15 2.52 9.57 0.5 6.26 0.98 1.02 1.14 0.89 1.11 39060 1159 3933 264 2643 83.0 2.46 8.36 0.56 5.62
52 52 Bay City, MI D 11449 562 1544 69 1088 14711 77.83 3.82 10.49 0.47 7.39 0.94 1.55 1.26 0.84 1.32 39060 1159 3933 264 2643 83.0 2.46 8.36 0.56 5.62
53 53 Beaumont-Port Arthur, TX A 899 5122 1660 106 170 7957 11.29 64.37 20.86 1.34 2.14 0.28 2.16 0.9 0.38 0.71 96080 70884 55440 8300 7206 40.39 29.79 23.3 3.49 3.03
54 54 Beaumont-Port Arthur, TX B 2546 11656 14156 1247 644 30248 8.42 38.53 46.8 4.12 2.13 0.21 1.29 2.01 1.18 0.7 96080 70884 55440 8300 7206 40.39 29.79 23.3 3.49 3.03
55 55 Beaumont-Port Arthur, TX C 523 2992 1408 34 149 5107 10.24 58.59 27.56 0.67 2.93 0.25 1.97 1.18 0.19 0.97 96080 70884 55440 8300 7206 40.39 29.79 23.3 3.49 3.03
56 56 Beaumont-Port Arthur, TX D 355 3473 856 18 159 4860 7.29 71.45 17.62 0.37 3.26 0.18 2.4 0.76 0.11 1.08 96080 70884 55440 8300 7206 40.39 29.79 23.3 3.49 3.03
57 57 Binghamton, NY A 2255 183 170 186 176 2970 75.92 6.15 5.72 6.27 5.94 1.03 0.8 0.9 1.0 1.03 106209 11020 9112 9003 8310 73.93 7.67 6.34 6.27 5.78
58 58 Binghamton, NY B 23858 3289 2270 1430 2205 33052 72.18 9.95 6.87 4.33 6.67 0.98 1.3 1.08 0.69 1.15 106209 11020 9112 9003 8310 73.93 7.67 6.34 6.27 5.78
59 59 Binghamton, NY C 22834 3361 2433 1672 2292 32594 70.06 10.31 7.47 5.13 7.03 0.95 1.34 1.18 0.82 1.22 106209 11020 9112 9003 8310 73.93 7.67 6.34 6.27 5.78
60 60 Binghamton, NY D 1512 473 261 104 205 2554 59.18 18.52 10.2 4.09 8.02 0.8 2.41 1.61 0.65 1.39 106209 11020 9112 9003 8310 73.93 7.67 6.34 6.27 5.78
61 61 Birmingham-Hoover, AL A 5709 43 106 66 142 6065 94.12 0.7 1.74 1.09 2.35 2.16 0.02 0.35 0.53 0.77 155725 166327 17741 7448 10877 43.48 46.44 4.95 2.08 3.04
62 62 Birmingham-Hoover, AL B 14948 6285 706 325 745 23009 64.96 27.32 3.07 1.41 3.24 1.49 0.59 0.62 0.68 1.07 155725 166327 17741 7448 10877 43.48 46.44 4.95 2.08 3.04
63 63 Birmingham-Hoover, AL C 17363 28889 2665 1106 1667 51690 33.59 55.89 5.16 2.14 3.22 0.77 1.2 1.04 1.03 1.06 155725 166327 17741 7448 10877 43.48 46.44 4.95 2.08 3.04
64 64 Birmingham-Hoover, AL D 8383 59889 4502 590 1931 75295 11.13 79.54 5.98 0.78 2.57 0.26 1.71 1.21 0.38 0.84 155725 166327 17741 7448 10877 43.48 46.44 4.95 2.08 3.04
65 65 Boston-Cambridge-Newton, MA-NH A 39375 2251 2258 4979 2889 51753 76.08 4.35 4.36 9.62 5.58 1.2 0.56 0.33 0.99 0.88 2716971 331571 562040 416219 271264 63.21 7.71 13.08 9.68 6.31
66 66 Boston-Cambridge-Newton, MA-NH B 170439 16978 16168 26299 17380 247264 68.93 6.87 6.54 10.64 7.03 1.09 0.89 0.5 1.1 1.11 2716971 331571 562040 416219 271264 63.21 7.71 13.08 9.68 6.31
67 67 Boston-Cambridge-Newton, MA-NH C 452120 136685 141563 111654 74007 916030 49.36 14.92 15.45 12.19 8.08 0.78 1.93 1.18 1.26 1.28 2716971 331571 562040 416219 271264 63.21 7.71 13.08 9.68 6.31
68 68 Boston-Cambridge-Newton, MA-NH D 179722 48748 92968 48110 28657 398204 45.13 12.24 23.35 12.08 7.2 0.71 1.59 1.79 1.25 1.14 2716971 331571 562040 416219 271264 63.21 7.71 13.08 9.68 6.31
69 69 Bridgeport-Stamford-Norwalk, CT A 15079 1122 2539 2266 875 21881 68.91 5.13 11.6 10.35 4.0 1.29 0.51 0.46 1.42 1.01 133943 25333 62695 18284 9915 53.54 10.13 25.06 7.31 3.96
70 70 Bridgeport-Stamford-Norwalk, CT B 21589 4396 10995 3950 1596 42526 50.77 10.34 25.85 9.29 3.75 0.95 1.02 1.03 1.27 0.95 133943 25333 62695 18284 9915 53.54 10.13 25.06 7.31 3.96
71 71 Bridgeport-Stamford-Norwalk, CT C 12261 4626 13082 2597 1195 33760 36.32 13.7 38.75 7.69 3.54 0.68 1.35 1.55 1.05 0.89 133943 25333 62695 18284 9915 53.54 10.13 25.06 7.31 3.96
72 72 Bridgeport-Stamford-Norwalk, CT D 2198 3478 6495 794 429 13393 16.41 25.97 48.49 5.93 3.21 0.31 2.56 1.94 0.81 0.81 133943 25333 62695 18284 9915 53.54 10.13 25.06 7.31 3.96
73 73 Buffalo-Cheektowaga, NY A 15865 2173 969 640 908 20555 77.18 10.57 4.71 3.11 4.42 1.18 0.61 0.67 0.55 0.94 530627 139564 57521 45662 38171 65.38 17.2 7.09 5.63 4.7
74 74 Buffalo-Cheektowaga, NY B 80832 37858 11286 7797 7587 145360 55.61 26.04 7.76 5.36 5.22 0.85 1.51 1.1 0.95 1.11 530627 139564 57521 45662 38171 65.38 17.2 7.09 5.63 4.7
75 75 Buffalo-Cheektowaga, NY C 59609 53497 19055 12422 8350 152934 38.98 34.98 12.46 8.12 5.46 0.6 2.03 1.76 1.44 1.16 530627 139564 57521 45662 38171 65.38 17.2 7.09 5.63 4.7
76 76 Buffalo-Cheektowaga, NY D 4726 5175 2977 206 840 13924 33.94 37.17 21.38 1.48 6.03 0.52 2.16 3.02 0.26 1.28 530627 139564 57521 45662 38171 65.38 17.2 7.09 5.63 4.7
77 77 Canton-Massillon, OH A 2486 409 95 17 209 3217 77.29 12.72 2.96 0.53 6.5 1.13 0.68 0.7 1.02 0.79 71884 19745 4466 541 8635 68.28 18.76 4.24 0.51 8.2
78 78 Canton-Massillon, OH B 17260 6172 1548 107 2856 27944 61.77 22.09 5.54 0.38 10.22 0.9 1.18 1.31 0.75 1.25 71884 19745 4466 541 8635 68.28 18.76 4.24 0.51 8.2
79 79 Canton-Massillon, OH C 10272 5386 1045 27 1901 18632 55.13 28.91 5.61 0.14 10.2 0.81 1.54 1.32 0.28 1.24 71884 19745 4466 541 8635 68.28 18.76 4.24 0.51 8.2
80 80 Canton-Massillon, OH D 1375 1429 187 3 332 3327 41.34 42.96 5.62 0.09 9.99 0.61 2.29 1.33 0.17 1.22 71884 19745 4466 541 8635 68.28 18.76 4.24 0.51 8.2
81 81 Charleston, WV A 3254 187 71 83 235 3829 84.97 4.89 1.84 2.18 6.13 1.11 0.39 0.96 0.94 0.95 47208 7649 1184 1423 3953 76.86 12.45 1.93 2.32 6.44
82 82 Charleston, WV B 5858 1614 204 164 633 8472 69.14 19.05 2.41 1.93 7.47 0.9 1.53 1.25 0.83 1.16 47208 7649 1184 1423 3953 76.86 12.45 1.93 2.32 6.44
83 83 Charleston, WV C 7549 1931 262 134 815 10692 70.61 18.06 2.45 1.25 7.62 0.92 1.45 1.27 0.54 1.18 47208 7649 1184 1423 3953 76.86 12.45 1.93 2.32 6.44
84 84 Charleston, WV D 2330 956 84 43 288 3701 62.96 25.82 2.26 1.17 7.78 0.82 2.07 1.17 0.51 1.21 47208 7649 1184 1423 3953 76.86 12.45 1.93 2.32 6.44
85 85 Charlotte-Concord-Gastonia, NC-SC A 8651 387 388 188 299 9913 87.27 3.9 3.91 1.9 3.02 1.55 0.14 0.48 0.54 0.71 75023 36710 10857 4665 5624 56.46 27.63 8.17 3.51 4.23
86 86 Charlotte-Concord-Gastonia, NC-SC B 8739 737 616 353 530 10974 79.63 6.71 5.61 3.22 4.83 1.41 0.24 0.69 0.92 1.14 75023 36710 10857 4665 5624 56.46 27.63 8.17 3.51 4.23
87 87 Charlotte-Concord-Gastonia, NC-SC C 13978 5705 1498 1008 1108 23297 60.0 24.49 6.43 4.33 4.76 1.06 0.89 0.79 1.23 1.12 75023 36710 10857 4665 5624 56.46 27.63 8.17 3.51 4.23
88 88 Charlotte-Concord-Gastonia, NC-SC D 10070 7462 1454 987 959 20932 48.11 35.65 6.94 4.72 4.58 0.85 1.29 0.85 1.34 1.08 75023 36710 10857 4665 5624 56.46 27.63 8.17 3.51 4.23
89 89 Chattanooga, TN-GA A 4738 449 389 96 226 5898 80.33 7.61 6.6 1.62 3.83 1.38 0.29 0.69 1.18 0.84 92469 41615 15196 2182 7263 58.26 26.22 9.57 1.37 4.58
90 90 Chattanooga, TN-GA B 12131 5352 1187 196 917 19784 61.32 27.05 6.0 0.99 4.64 1.05 1.03 0.63 0.72 1.01 92469 41615 15196 2182 7263 58.26 26.22 9.57 1.37 4.58
91 91 Chattanooga, TN-GA C 11770 10500 6125 228 1289 29911 39.35 35.1 20.48 0.76 4.31 0.68 1.34 2.14 0.55 0.94 92469 41615 15196 2182 7263 58.26 26.22 9.57 1.37 4.58
92 92 Chattanooga, TN-GA D 5340 5664 1409 212 578 13203 40.45 42.9 10.67 1.61 4.38 0.69 1.64 1.11 1.17 0.96 92469 41615 15196 2182 7263 58.26 26.22 9.57 1.37 4.58
93 93 Chicago-Naperville-Elgin, IL-IN-WI A 46352 8447 7773 3201 2630 68403 67.76 12.35 11.36 4.68 3.84 1.39 0.74 0.48 0.64 1.13 4471615 1531274 2187375 673021 310889 48.74 16.69 23.84 7.34 3.39
94 94 Chicago-Naperville-Elgin, IL-IN-WI B 202942 113905 90694 40663 17715 465918 43.56 24.45 19.47 8.73 3.8 0.89 1.46 0.82 1.19 1.12 4471615 1531274 2187375 673021 310889 48.74 16.69 23.84 7.34 3.39
95 95 Chicago-Naperville-Elgin, IL-IN-WI C 579196 447000 705314 75961 58074 1865546 31.05 23.96 37.81 4.07 3.11 0.64 1.44 1.59 0.56 0.92 4471615 1531274 2187375 673021 310889 48.74 16.69 23.84 7.34 3.39
96 96 Chicago-Naperville-Elgin, IL-IN-WI D 250471 297196 295129 63372 27927 934095 26.81 31.82 31.6 6.78 2.99 0.55 1.91 1.33 0.92 0.88 4471615 1531274 2187375 673021 310889 48.74 16.69 23.84 7.34 3.39
97 97 Cincinnati, OH-KY-IN A 10921 231 460 153 479 12243 89.2 1.89 3.76 1.25 3.91 1.3 0.1 0.76 0.39 0.76 917344 245761 66672 42435 68783 68.41 18.33 4.97 3.16 5.13
98 98 Cincinnati, OH-KY-IN B 26682 1389 1600 235 1979 31885 83.68 4.36 5.02 0.74 6.21 1.22 0.24 1.01 0.23 1.21 917344 245761 66672 42435 68783 68.41 18.33 4.97 3.16 5.13
99 99 Cincinnati, OH-KY-IN C 35616 4566 4811 241 3364 48597 73.29 9.39 9.9 0.5 6.92 1.07 0.51 1.99 0.16 1.35 917344 245761 66672 42435 68783 68.41 18.33 4.97 3.16 5.13
100 100 Cincinnati, OH-KY-IN D 5984 2281 1899 78 792 11034 54.23 20.67 17.21 0.7 7.18 0.79 1.13 3.46 0.22 1.4 917344 245761 66672 42435 68783 68.41 18.33 4.97 3.16 5.13

Next page

Advanced export

JSON shape: default, array, newline-delimited

CSV options:

CREATE TABLE "redlining/metro-grades" (
"metro_area" TEXT,
  "holc_grade" TEXT,
  "white_pop" INTEGER,
  "black_pop" INTEGER,
  "hisp_pop" INTEGER,
  "asian_pop" INTEGER,
  "other_pop" INTEGER,
  "total_pop" INTEGER,
  "pct_white" REAL,
  "pct_black" REAL,
  "pct_hisp" REAL,
  "pct_asian" REAL,
  "pct_other" REAL,
  "lq_white" REAL,
  "lq_black" REAL,
  "lq_hisp" REAL,
  "lq_asian" REAL,
  "lq_other" REAL,
  "surr_area_white_pop" INTEGER,
  "surr_area_black_pop" INTEGER,
  "surr_area_hisp_pop" INTEGER,
  "surr_area_asian_pop" INTEGER,
  "surr_area_other_pop" INTEGER,
  "surr_area_pct_white" REAL,
  "surr_area_pct_black" REAL,
  "surr_area_pct_hisp" REAL,
  "surr_area_pct_asian" REAL,
  "surr_area_pct_other" REAL
);
Powered by Datasette · Queries took 134.295ms · Data license: CC Attribution 4.0 License · Data source: fivethirtyeight/data on GitHub · About: simonw/fivethirtyeight-datasette