home / fivethirtyeight / riddler-castles/castle-solutions

Menu
  • GraphQL API

riddler-castles/castle-solutions: 2

This directory contains the data behind the submissions for castles puzzle.

  • castle-solutions.csv contains the submissions for Can You Rule Riddler Nation?
  • castle-solutions-2.csv contains the submissions for The Battle For Riddler Nation, Round 2
  • castle-solutions-3.csv contains the submissions for Are You The Best Warlord?
  • castle-solutions-4.csv contains the submissions for A Peaceful (But Not Peaceful) Transition Of Power In Riddler Nation
  • castle-solutions-5.csv contains the submissions for The Fifth Battle For Riddler Nation, in which there were 13 castles rather than the usual 10

Readers were asked to submit a strategy for the following “Colonel Blotto”-style game:

In a distant, war-torn land, there are 10 castles. There are two warlords: you and your archenemy. Each castle has its own strategic value for a would-be conqueror. Specifically, the castles are worth 1, 2, 3, …, 9, and 10 victory points. You and your enemy each have 100 soldiers to distribute, any way you like, to fight at any of the 10 castles. Whoever sends more soldiers to a given castle conquers that castle and wins its victory points. If you each send the same number of troops, you split the points. You don’t know what distribution of forces your enemy has chosen until the battles begin. Whoever wins the most points wins the war.

Submit a plan distributing your 100 soldiers among the 10 castles. Once I receive all your battle plans, I’ll adjudicate all the possible one-on-one matchups. Whoever wins the most wars wins the battle royale and is crowned king or queen of Riddler Nation!

The data includes all valid submissions, with solvers’ identifying information removed. The 11 columns represent the soldiers deployed to each of the 10 castles, plus a column where the reader could describe his or her strategic approach.

Correction

Please see the following commit: https://github.com/fivethirtyeight/data/commit/c3f808fda5b67aa26ea6fa663ddd4d2eb7c6187f

Data source: https://github.com/fivethirtyeight/data/blob/master/riddler-castles/castle-solutions.csv

This data as json, copyable

rowid Castle 1 Castle 2 Castle 3 Castle 4 Castle 5 Castle 6 Castle 7 Castle 8 Castle 9 Castle 10 Why did you choose your troop deployment?
2 52 2 2 2 2 2 2 12 12 12 I need to win at least 4 castles to win the game. Any combination of 7 castles wins the game. I assume that the border cases of trying to win 1-7 or 1 and 8-10 will be popular. If possible, I should like to be able to beat either strategy. One way to do that would be to play minimally on all numbers except for 1. Then I take the ones they don't want, but I also steal castle 1, which is less sought after. Of course, I lose to the "10s all around" strategy, which I imagine will also be popular. Notice that the key is not beating a randomly generated opponent, but beating the most opponents, which means I want to be able to beat the most popular strategies. Hmm. The method I've devised will beat "10s all around" and has a shot at beating folks who go all in on another strategy. I expect to get beaten a lot, though, by folks who pick a different set of castles they want to win. Oh well. I've already spent too long on this. If nothing else, I've given you another weird data point! :)
Powered by Datasette · Queries took 1.401ms · Data source: https://github.com/fivethirtyeight/data/blob/master/riddler-castles/castle-solutions.csv