home / fivethirtyeight

Menu
  • GraphQL API

2015 Women's World Cup Tournament Predictions: wwc-matches-20150607-180420.csv

Table actions
  • GraphQL API for womens-world-cup-predictions/wwc-matches-20150607-180420

FiveThirtyEight's forecasts for the 2015 World Cup, including each team's WSPI rating and chance of advancing, updated throughout the course of the tournment. The date and time of each update are indicated in the file names. All times are in EDT.

Overall forecasts

Overall forecasts are stored in files named like wwc-forecast-YYYYMMDD-HHMMSS.csv.

Header Definition
wspi Women's Soccer Power Index
wspi_offense Women's Soccer Power Index offensive rating
wspi_defense Women's Soccer Power Index defensive rating
group_first Chance of coming in first place in the group stage
group_second Chance of coming in second place in the group stage
group_third_advance Chance of coming in third place in the group stage and advancing to the knockout stage
group_third_no_advance Chance of coming in third place in the group stage but not advancing to the knockout stage
group_fourth Chance of coming in fourth place in the group stage
sixteen Chance of advancing to the knockout stage
quarter Chance of advancing to the quarter finals
semi Chance of advancing to the semi-finals
cup Chance of making it to the final game
win Chance of winning the whole thing

Note: These probabilities are based on 20,000 simulations. A win probability of 0.0 doesn't necessarily mean that a team has a zero percent chance of winning the tournament -- it means that the team did not win the tournament in any of the 20,000 simulations.

Match probabilities

Individual match probabilities are stored in files named like wwc-matches-YYYYMMDD-HHMMSS.csv.

Header Definition
team1_win The probability that team1 will beat team2
team2_win The probability that team2 will beat team1
tie The probability the game will end in a tie

For the Women's World Cup predictions interactive, click here.

For an explanation of WSPI, click here.

Data license: CC Attribution 4.0 License · Data source: fivethirtyeight/data on GitHub · About: simonw/fivethirtyeight-datasette

36 rows sorted by team1_win

✎ View and edit SQL

This data as json, copyable, CSV (advanced)

Suggested facets: date, group, team2, date (date)

team1 24 ✖

  • Australia 2
  • Brazil 2
  • Canada 2
  • China 2
  • England 2
  • France 2
  • Germany 2
  • Ivory Coast 2
  • Japan 2
  • South Korea 2
  • Switzerland 2
  • USA 2
  • Cameroon 1
  • Colombia 1
  • Costa Rica 1
  • Ecuador 1
  • Mexico 1
  • Netherlands 1
  • New Zealand 1
  • Nigeria 1
  • Norway 1
  • Spain 1
  • Sweden 1
  • Thailand 1
Link rowid date group team1 team2 team1_win ▼ team2_win tie
2 2 2015-06-06 A New Zealand Netherlands 0.0 1.0 0.0
25 25 2015-06-15 B Thailand Germany 0.00377093 0.95446203 0.04176704
29 29 2015-06-16 C Ecuador Japan 0.00472105 0.94349243 0.05178653
35 35 2015-06-17 E Costa Rica Brazil 0.02384726 0.87797762 0.09817513
26 26 2015-06-15 B Ivory Coast Norway 0.07028529 0.78042051 0.1492942
31 31 2015-06-16 D Nigeria USA 0.07594022 0.77008172 0.15397806
33 33 2015-06-17 F Mexico France 0.09508556 0.73666188 0.16825255
27 27 2015-06-15 A Netherlands Canada 0.20662596 0.57308246 0.22029158
32 32 2015-06-16 D Australia Sweden 0.27718024 0.4867505 0.23606926
11 11 2015-06-09 F Colombia Mexico 0.30903152 0.45082113 0.24014735
14 14 2015-06-11 A China Netherlands 0.34258537 0.41473201 0.24268262
36 36 2015-06-17 E South Korea Spain 0.36546493 0.39108081 0.24345426
28 28 2015-06-15 A China New Zealand 0.45484272 0.30539072 0.23976656
17 17 2015-06-12 D Australia Nigeria 0.47592165 0.28662106 0.23745729
15 15 2015-06-11 B Ivory Coast Thailand 0.48906299 0.27518168 0.23575534
30 30 2015-06-16 C Switzerland Cameroon 0.49031461 0.27410252 0.23558287
9 9 2015-06-09 F France England 0.49471733 0.27032069 0.23496198
19 19 2015-06-12 D USA Sweden 0.57542022 0.20482904 0.21975074
5 5 2015-06-08 D Sweden Nigeria 0.58603529 0.19674381 0.21722091
23 23 2015-06-13 F England Mexico 0.62692345 0.16672927 0.20634728
22 22 2015-06-13 E Brazil Spain 0.64073986 0.15699135 0.20226878
24 24 2015-06-13 E South Korea Costa Rica 0.64980846 0.15071084 0.1994807
12 12 2015-06-09 E Brazil South Korea 0.65353454 0.14815589 0.19830957
10 10 2015-06-09 E Spain Costa Rica 0.6625205 0.14205565 0.19542385
7 7 2015-06-08 D USA Australia 0.68198565 0.12914026 0.18887409
16 16 2015-06-11 A Canada New Zealand 0.6850745 0.12712854 0.18779696
8 8 2015-06-08 C Japan Switzerland 0.68772696 0.12540932 0.18686372
34 34 2015-06-17 F England Colombia 0.69715576 0.1193602 0.18348404
6 6 2015-06-08 C Cameroon Ecuador 0.71037766 0.11104222 0.17858012
13 13 2015-06-11 B Germany Norway 0.71701152 0.1069418 0.17604668
20 20 2015-06-12 C Japan Cameroon 0.78700092 0.06675389 0.14624519
21 21 2015-06-13 F France Colombia 0.79871394 0.06060112 0.14068494
18 18 2015-06-12 C Switzerland Ecuador 0.80665208 0.05653 0.13681792
1 1 2015-06-06 A Canada China 1.0 0.0 0.0
3 3 2015-06-07 B Norway Thailand 1.0 0.0 0.0
4 4 2015-06-07 B Germany Ivory Coast 1.0 0.0 0.0

Advanced export

JSON shape: default, array, newline-delimited

CSV options:

CREATE TABLE "womens-world-cup-predictions/wwc-matches-20150607-180420" (
"date" TEXT,
  "group" TEXT,
  "team1" TEXT,
  "team2" TEXT,
  "team1_win" REAL,
  "team2_win" REAL,
  "tie" REAL
);
Powered by Datasette · Queries took 155.915ms · Data license: CC Attribution 4.0 License · Data source: fivethirtyeight/data on GitHub · About: simonw/fivethirtyeight-datasette